Lignin Depolymerisation under Supercritical Process Conditions for Aromatic Chemicals Production

نویسندگان

  • Richard J.A. Gosselink
  • J.E.G. van Dam
  • E. de Jong
  • G. Gellerstedt
  • E. L. Scott
  • J.P.M. Sanders
چکیده

Valorisation of lignin plays a key role in the further development of biorefinery processes for biofuels and the production of biobased materials from lignocellulosic biomass. Today’s increased demand for alternatives to fossil carbon based products, such as the production of transportation biofuels and bulk “green” chemicals, expands the interest and the need to create added value to the unconverted lignin fraction. As a consequence of its poly-aromatic structure, lignin is the obvious candidate to serve as a source for aromatic chemicals. In this work organosolv hardwood lignin was converted in a mixture of super critical carbon dioxide, acetone and water (300 – 370°C, 100 bar) to aromatic monomeric compounds with a total yield of 10% based on dry lignin. Addition of formic acid increases the yield of aromatics from 7% to 10%. Main monomeric lignin derived products were 2,6-dimethoxyphenol, 4-hydroxy-3,5dimethoxybenzoic acid, 2-methoxy-4-methylphenol and 2methoxyphenol. During this process a strong competition occurs between depolymerisation of lignin and recondensation of fragments. This leads to a residual lignin fraction representing 40% of the starting material consisting of a substantially reduced oxygen/carbon ratio and a similar structure to carbon black.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lignin depolymerisation strategies: towards valuable chemicals and fuels.

Research on lignin deconstruction has recently become the center of interest for scientists and companies worldwide, racing towards harvesting fossil-fuel like aromatic compounds which are so durably put together by plants as products of millions of years of evolution. The natural complexity and high stability of lignin bonds (also as an evolutionary adaptation by plants) makes lignin depolymer...

متن کامل

Review on Catalytic Cleavage of C–C Inter-unit Linkages in Lignin Model Compounds: Towards Lignin Depolymerisation

Lignin depolymerisation has received considerable attention recently due to the pressing need to find sustainable alternatives to fossil fuel feedstock to produce chemicals and fuels. Two types of interunit linkages (C–C and C–O linkages) link several aromatic units in the structure of lignin. Between these two inter-unit linkages, the bond energies of C–C linkages are higher than that of C–O l...

متن کامل

Hydrogen transfer from supercritical methanol over a solid base catalyst: a model for lignin depolymerization.

A (super)critical transfer: The consecutive hydrogenolysis and hydrogenation of the lignin model compound dihydrobenzofuran was studied in supercritical methanolic solutions using porous metal oxide catalysts. These catalysts promote H(2) production from methanol followed by hydrogenolysis of the ether linkages and reduction of the aromatic rings, leading principally to a mixture of cyclohexanols.

متن کامل

Extraction and Recovery of Polycyclic Aromatic Hydrocarbons in Petroleum Contaminated Soils Using Supercritical Water by Response Surface Methodology

Finding an environment-friendly and affordable method to remove contaminated soils from Polycyclic Aromatic Hydrocarbons (PAHs) has now become an attractive field for researchers, with super-critical fluid extraction being an innovative process in the field of contaminated soil treatment. Extraction with super-critical fluid is a simple and rapid extraction process that uses super-critical flui...

متن کامل

Selective production of arenes via direct lignin upgrading over a niobium-based catalyst

Lignin is the only large-volume renewable source of aromatic chemicals. Efficient depolymerization and deoxygenation of lignin while retaining the aromatic functionality are attractive but extremely challenging. Here we report the selective production of arenes via direct hydrodeoxygenation of organosolv lignin over a porous Ru/Nb2O5 catalyst that enabled the complete removal of the oxygen cont...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011